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Renormalization Group Description of Polymer 
Excluded Volume 

Karl F. Freed: and A. L. Kholodenko 2 

A description is provided of the chain conformation space renormalization 
group approach to the treatment of polymer excluded volume. This method is 
transformed into one of identical form to the t'Hooft-Veltman renormalization 
method of field theory, thereby enabling comparison with other methods. A 
summary is provided of recent new results obtained by this technique for the full 
second-order dependence of the mean square end-to-end distance (R 2) on chain 
length and excluded volume as well as a calculation of (R 2) for a polyelectrolyte 
chain with added salt. 

KEY WORDS: Renormalization group; dimensional regularization; poly- 
mer excluded volume; crossover; polyelectrolytes. 

1. I N T R O D U C T I O N  

Renorma l i za t i on  group me thods  have  been  shown to p rov ide  a va luab le  
a p p r o a c h  to the descr ip t ion  of exc luded  vo lume effects in p o l y m e r  systems. 
Ear ly  r enormal i za t ion  group  works  are  based  on the ana logy  be tween  the 
proper t ies  of po lymers  with exc luded  vo lume a n d  the cri t ical  p roper t ies  of 
magnets ,  the so-cal led  p o l y m e r - m a g n e t  ana logy.  (~,2) The  complex i ty  of 
po lymer  systems and  deficiencies  in the p o l y m e r - m a g n e t  ana logy  have  led 
to the deve lopmen t  of d i rec t  r enormal i za t ion  group a pp roa c he s  to descr ibe  
p o l y m e r  exc luded  volume.  (3-5) Two of these (3'4) d i rec t  r enormal i za t ion  

app roaches  used me thods  taken  f rom field theory,  while the chain  confor-  
ma t ion  space renormal iza t ion  t r ea tment  (5) differs cons ide rab ly  by  be ing  
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based solely within chain space. This chain conformation space method 
performs the renormalization for the chains of finite lengths as opposed to 
the other field theoretical approaches (3'4) which consider only the asymp- 
totic limit of infinitely long polymer chains. 

In order to indicate the relationship between these different direct 
renormalization methods as well as to develop techniques to attack new 
fundamental polymer problems, we have converted (6) the chain configura- 
tion space renormalization group approach into equivalent formulation in 
Fourier-Laplace transform space. The transformed theory is then shown (6) 
to be precisely of the form of a one-component q~4-type field theory with 
the only departure that the numerical combinatorial factors for individual 
terms in the perturbation expansion are generated from the excluded 
volume perturbation series. In this formulation our method is shown to 
provide the following advancements over the other two direct renormaliza- 
tion group approaches: (a) The procedure follows directly from the ex- 
cluded volume perturbation expansion; (b) the renormalization is per- 
formed for finite chain lengths, so the complete crossover dependence (7) on 
excluded volume and chain length can be described by the theory; (c) 
insertions (3,4,8) are not required, thereby reducing the computational labor; 
(d) all diagrams can be readily and efficiently evaluated using t 'Hooft- 
Veltman method. (9'1~ 

The power of the new renormalization method is illustrated by summa- 
rizing our recent work (6) on two problems. The mean square end-to-end 
distance (R 2) for a single polymer chain has been evaluated to second 
order in excluded volume. The exponents are already well known in the 
limit of long chains from the field theory (n ~ 0) methods ( 1,2~; however, our 
second-order calculations generate in addition to these exponents the 
expansion for the previously unavailable numerical prefactors as well as the 
full second-order crossover dependence on the excluded volume interaction 
strength and chain length. In addition, we consider the description of 
excluded volume effects for a polyelectrolyte chain (i.e., one with charges) 
for solutions where the salt concentration is sufficiently high so that in 
zeroth order the polyelectrolyte chain backbone has a reasonable degree of 
flexibility. This limit is the one of most direct relevance to experiments and 
has not been considered previously by renormalization group methods. Our 
results show that there is no stable fixed point for polyelectrolyte excluded 
volume, so that this important system cannot be described by simple scaling 
theories of excluded volume (2~ or other renormalization group methods 
which are solely geared to the calculation of exponents. The final results are 
shown to depend on three scaling variables, two of which are related to the 
two types of interactions, while the third involves the ratio of the chain size 
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to the Debye screening length and in these polyelectrolyte chains is always 
much greater than unity. 

In the next section we briefly review the salient physical concepts from 
the chain conformation space renormalization group procedure. The 
Fourier-Laplace transform of relevant quantities then is shown in Section 3 
to provide an equivalent representation which can more readily be com- 
pared with the standard field theoretic renormalization group approaches. 
No prior knowledge of the field theoretic methods is, however, assumed or 
required. 

Lastly, in Section 4 we summarize our recent results (6> on the second- 
order crossover behavior of (R 2) for a single polymer chain with excluded 
volume as well as (R 2) for a polyelectrolyte chain. 

2. CHAIN CONFORMATION SPACE RENORMALIZATION 
GROUP METHOD (5) 

While the detailed chemical structure of a polymer chain may at first 
sight appear rather complicated, in general, we are interested here in only 
long-wavelength properties on some experimental length scale L which is 
much larger than microscopic length scale, say, as given by the size of a 
monomer a. On the scale L it is then permissible to consider simplified 
models of the polymer chain. Here we employ the well-known model of a 
continuous flexible Gaussian chain where the backbone is taken as a 
continuous random walk. There is, however, excluded volume which makes 
contacts between polymer segments energetically unfavorable. 

(R 2) for a random walk chain depends on the chain length N as 
(R 2) oc N, whereas with excluded volume the chain swells to provide the 
dependence (R 2) cc N 2", 2t, > 1. Viewing the chain size as a correlation 
length we have the analogy with critical phenomena where the chain length 
N corresponds to IT- Tel-~, the inverse distance from the critical point. 
De Gennes showed that the description of polymer excluded volume can be 
written (1) as the n ~ 0  limit of the O(n) n-vector model of field theory. 
Scaling theories of polymer excluded volume (2) have also been developed, 
in analogy with their use in critical phenomena, to provide insights into 
various asymptotic domains as well as into the value of exponents in these 
domains. However, the simple scaling theories provide no information on 
the important prefactors; they cannot determine when the asymptotic limit is 
reached; and they cannot deal with important crossover behavior that arises 
when more than one length scale becomes relevant. Renormalization group 
theory, in principle, provides a method for the calculation of all of the 
above quantities which are important for polymer systems since it is 
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generally the rule that these polymer systems do not lie in the asymp- 
totic scaling type limit. The majority of other renormalization group ap- 
proaches (3,4) appear to be patterned after those in critical phenomena (8) 
and directed solely towards the calculation of exponents, thereby sharing 
some of the deficiences of scaling theories. 

The simple model of a continuous chain with excluded volume is 
summarized by the dimensionless "Hamiltonian" 

No 
1 s l v ~  ~fl drdr'6[C(r)- C(r ')]  (1) 

- -  ' a 

Here C(r) is the chain configuration as a function of contour length 
variable r. The first term on the right-hand side describes chain connectiv- 
ity, and the second term produces excluded volume effects. The Hamilto- 
nian has three parameters: N O the chain length, Vo the bare microscopic 
excluded volume, and a the cutoff to remove self-excluded volume interac- 
tions. 

A perturbation expansion in powers of v 0 is readily shown (11) to be in 
fact an expansion in powers of voN;/2 where e = 4 - d with d the dimen- 
sionality of space. Such an expansion is obviously of little use for N O ~ oc 
when d < 4. In addition, the coefficients in this expansion are sensitive to 
the value of a /N  o , making computed properties dependent on what would 
appear to be irrelevant microscopic details. The first difficulty can be 
remedied by considering d to be a continuous variable and expanding e for 
small e via 

voN~/2= %[1 + ~ InN 0 + 1 (  ~ )2(inN0)2 + . . .  ] (2) 

The removal of the sensitive dependence on microscopic details and the 
determination of methods to extrapolate to e approaching unity are pro- 
vided by a renormalization group method. 

The continuous chain model is physically absurd for small length 
scales, e.g., lengths less than or on the order of a. However, the model is 
correct on a scale L for L/a  >> 1. Hence, the observable polymer length N 
may differ from that N o in the model (1). But if we, say, double the length 
of the continuous chain N o we must double the length of the real polymer 
chain N. This can be expressed as 

N = Z2N o (3) 

where Z 2 is a proportionality factor which depends on excluded volume 
and the dimensionless combination a/L. v o describes a binary encounter 
between segments, whereas there is a macroscopic excluded volume param- 
eter v which describes the cooperative effects of excluded volume on a 
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length scale L. Introducing the dimensionless variables 

u 0 = voL'/2, u = vL ~/2 (4) 

this relationship between macroscopic and microscopic excluded volume is 
summarized by 

u = U(uo,a/L ) (5) 

The partition function for fixed end vector R, as calculated from (1), is 
designated as Gs(R, No, v0;a), where the subscript B indicates bare unre- 
normalized quantities. G~ contains microscopic irrelevant details, such as 
the cutoff a, which should not be present on the macroscopic length scale L 
for the observable G(R, N, v; L). However, when normalized both G B and G 
should produce the same end vector probability distribution, and therefore 
these two must be related by a proportionality factor 

O(R,N,u; L) = Z(u ,a /L)G~(R,N o ,v o ;a) (6) 

where subsequently we employ the limit alL---) O. 
In summary, we have a set of microscopic and macroscopic parame- 

ters and quantities which differ but which are interrelated as described (5) 
above in Eqs. (3)-(5). 

The existence of these macroscopic-microscopic relations leads to 
profound consequences. The microscopic model Hamiltonian (1) and all 
quantities calculated from it are, of course, independent of the macroscopic 
observational length scale L. Hence, we have the trivial relationship 

[ L-~-~ GB(R, No,vo ; a) ]No,vo,a= O (7) 

Inserting the macroscopic-microscopic relations 

G~ (R, N o, u o ; a) = Z -l(u, alL)G[R, Zz(u , alL)No,  Uo(U, alL);  L] (8) 

into (7) we readily obtain the highly nontrivial renormalization group (RG) 
equation as 

[ 3 ~lnZ ~lnZ2 ~ ] G(R,N,u;L)=O 
L-ff--~ + ~ (u) o- ~ + L ~ + L ~ N-~--N No,vo,a 

(9) 

where the Gell-Mann-Low function is given as 

Ou 
B(u) =L-~- E Uo,oo,O (10) 

This renormalization group equation summarizes the general analytic struc- 
ture of the dependence of macroscopic observables like G on the macro- 
scopic parameters. 
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When the macroscopic u is independent of the observational length 
scale L, (for L / a  >> 1) then the system exhibits the asymptotic universal 
scaling behavior. This is the sole limit which is accessible to simple scaling 
theories (2) and is the limit which has been the object of a variety of 
renormalization group approaches. (3'4) This limit is defined by the condi- 
tion 

fl(u)lu=u, = 0 (11) 

where u* is called the fixed point coupling constant. The use of Eq. (11) 
simplifies the RG equation (9) enormously. The solution of the RG 
equation and simple dimensional analysis readily enables the demonstra- 
tion that G behaves in the scaling limit as (s) 

G(R,N,u*;  L = 1) = N ~-~a -~ f (R /N  ~ ) (12) 

where we use a system of units in which L -- 1, and the exponents ~ and 7 
are numbers calculated from 

2 v - 1  31nZ2 u= 7 - 1  31nZ u=u* (13) 
2p - L - ~ f f -  u*' 2p -L---3--L-- 

thus providing the asymptotic scaling law formerly only postulated in 
scaling theories. The RG equation (9) can also be solved for u :~ u* and 
thereby provide the important crossover dependence on u and N. (7) 

The calculation of u*, "/, ~ and the scaling function f ( R N - ~ )  requires 
the determination of u, Z, and Z a. If, for instance, we consider the 
perturbation expansion for G~ in powers of e and u o, it is found that there 
are many terms in the series which become divergent in the limit that 
a / N o ~  O, thereby exhibiting a strong dependence on relevant microscopic 
detail. Hence, the renormalization constants Z, Z 2, Uo(U ) are defined such 
that the perturbation expansion of the macroscopic G should be indepen- 
dent of microscopic details, i.e., independent of a. The actual computations 
are carried out with the method of dimensional regularization which leads 
to terms in the perturbation expansion involving inverse powers of e so that 
the renormalization constants are defined to absorb all the singular c -~ 
terms. 

This chain conformation space renormalization group method has 
been applied to the calculation of a wide variety of polymer properties 
including G(R, N), (5) the static coherent scattering function, (12) the internal 
vector distribution for linear (13) and ring polymers, (14) the second viral 
coefficient for polymers, (7~ the dynamics of single polymer chain, (15) as well 
as the concentration dependence of the osmotic pressure (13) and (R 2) for a 
labeled polymer chain. In addition, the full crossover dependence on N and 



Renormalization Group Description of Polymer Excluded Volume 443 

excluded volume interaction strength (7) has been given for a number of the 
above polymer properties. Since much of this material, as well as the 
detailed theoretical methods, are already published, they are not repeated 
here. Instead we now turn to the conversion of this chain conformation 
space renormalization group method into an equivalent formulation (6~ 
which allows direct use of the t'Hooft-Veltman style dimensional regulari- 
zation and renormalization. 

3. T 'HOOFT-VELTMAN STYLE VERSION OF CHAIN 
CONFORMATIONAL SPACE RENORMALIZATION 
GROUP METHOD <6> 

Let k be the Fourier variable conjugate to the position variable, say the 
chain end-to-end vector R. Likewise, let s' be the Laplace variable conju- 
gate to the chain length N o . Then, introducing the change of variables 
s = s'Z~ -1 the renormalization relationship (see Eq. (8)) for the Fourier- 
Laplace transform of G takes the form of (6) 

G(k,s,u; L) = IZ�89 + Zs + 2~Y,(k, Z2s)] -1 (14) 

where E is the "self energy" or "mass" operator which contains all effects 
of excluded volume. E may be obtained from G B as 

GB(k,s, vo;a)= [�89 2 + s + E(k,s)] -~ (15) 

The derivation of (14) provides the important relationship 

~ Z Z 2  1 

between the renormalization constants which makes it totally unnecessary 
to employ insertions (3'4'8~ to calculate the polymer exponents. The quanti- 
ties Z and Z are chosen to remove the singular parts of ZE(k,  Z2s ) which 
are proportional to k 2 and s, respectively. These quantities have an identi- 
cal form to standard t'Hooft-Veltman-type renormalization results for 
one-component massive ~4 field theory. (~~ The traditional polymer pertur- 
bation expansion(Ill for GB, however, provides different numerical weight 
factors for the individual terms in the perturbation expansion, but this 
introduces no real difference in the application of the method. Whereas two 
of the previous direct renormalization group approaches (3'4) are limited to 
the treatment of infinitely long chains (or s->0), the above procedure 
enables us to consider the case of general N (or s) and thereby provide 
molecular-weight-dependent properties such as those which are necessary 
in treating crossover properties and are essential in describing polyelectro- 
lyte excluded volume. Our method has the additional decided advantage of 
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enabling the values of many of the diagrams to be directly taken from 
available text-books on field theory. 

This new renormalization group method has been applied to the 
calculation (R 2) to second order. (6) The exponent 2p is already well 
known, and recalculations of it are of no interest. However, in the asymp- 
totic scaling limit, our method permits the evaluation of the overall coeffi- 
cient, and this can be found from the scaling limit form (6) 

"" E t[ ]2 . (R 2) = N ( - ~  ) e/8+15/4(e/8)2+ " [ 1 -  g + 0.300(-~ ! + ' "  J]' (16) 

Although the exponent 2p - 1 is known to be an asymptotic expansion (16) 
in e, the prefactor appears to be much more reasonably convergent. 

The power of the chain conformation space renormalization group 
method and its Fourier-Laplace representation is exhibited by the cross- 
over behavior of (R2). Let ~ be a scaling parameter which measures the 
strength of the excluded volume interaction. It is proportional to N ~/2 as 
well as to a nonanalytic function of the excluded volume interaction u. 
ranges from 0 for the Gaussian random walk to oe for the self-avoiding 
walk limit. To second order in u* (R 2) is found (6) to be 

(R2) = N( _ ~  )[f(~,u')](2crN/L)-2u'~+;)-i-(3/2)[~(u*)2 /l +~] 

• 1-f(~'u*)-O'2294'~(u*)----~21 + ~ 0"0706 ~'2(u*)~ } ( 1  "4- ~ )2 

(17) 

where the fixed point coupling constant u* is 

u* =-g + 

and f(~,u*)= u*~[~ + e-f(1 + ~(1 + ~)-lVu*/4)-x]-l, f =  _ ~(U,)2(~-_ 1) 
/(~ + 1), X = -- ~Z U*. ~ can be written (6) to second order in terms of u as a 
function of the parameter w = u(u* - u)-~ as 

~= (2__~)'/2w( 1 + W)[+(17/4)u*-8(u*)2-(21/n)(17/4)(u*)Z] 

[ (w(W--1) l + -  1) • exp -- 5 (u,)2 (19) 

Professor Domb's (tv) work on lattice enumeration has not yet established 
the behavior of the proper scaling function ~ as a function of the interac- 
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tion strength u, but perhaps the RG result (17), (19) will enable this 
nonanalytic function to be further investigated by lattice enumeration 
techniques. Notice that the effective exponent of N in (17) is not only a 
function of the crossover scaling parameter ~', but also a function of the 
chain length N, exhibiting the nonuniversal behavior of (R2). It will be 
interesting to compare this result with those of lattice enumerations since 
the asymptotic exponent 2v from (16) to order c 2 is rather close to 
presumably exact numerical results despite the asymptotic nature of the 
E-expansion. Hence, computed asymptotic properties to second order 
should be very accurate. 

4. RENORMALIZAT ION GROUP DESCRIPTION OF EXCLUDED 
VOLUME IN POLYELECTROLYTES 

Polyelectrolytes have a variety of different length scales. ( ~8~ First there 
is a Debye-Huckel screening length x-1; then b is the spacing between 
charges; and ~ = eZ/%kT defines the Bjerrum length. The experimentally 
relevant limit involves the dimensionless parameters 

= X B / b << 1 (20) 

= 1 ( 2 1 )  

where (20) is the condition that no charge condensation occurs, (19) while 
(21) is the condition that the chain retains sufficient flexibility so that a 
model in terms of a flexible backbone chain is valid. Experimental data 
suggest (2~ an empirical form for (R 2) of a polyetectrolyte chain in this 
regime as 

(R2) = Nf (~, ~2)g(~, ~2) (22) 

where the functions f and g are, in general, dependent on the three length 
scales of the problem, thereby indicating the lack of simple scaling or 
universal behavior. A theoretical description of the rich behavior implied 
by (22) is totally lacking. A previous renormalization group treatment (2~) 
considered a jellium model with no explicit dependence on salt concentra- 
tion. If charge condensation is ignored in this hypothetical model, then the 
chain would be rodlike, and the model invoked of a flexible chain with 
unscreened Coulomb interactions is of only academic interest. 

We have applied the t'Hooft-Veltman type renormalization descrip- 
tion (6~ to a flexible polyelectrotyte chain with screened Debye type interac- 
tions in addition to nonelectrostatic excluded volume interactions. A renor- 

malization calculation indicates the absence of a stable fixed point, hence, 
the absence of a simple scaling limit. The first order expansion in both 
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electrostatic and excluded volume coupling constants provides (R 2) as a 
function of three scaling parameters as (6) 

x 1 8 ~ 1 + ln~3 + 4~'f 
- 2 0  1 - ~2  

with Y Euler's constant. The parameters ~1 and f2 depend on x and provide 
measures of the two types (excluded volume and electrostatic) of interac- 
tion strengths, representing a generalization of the simple f parameter (~9) 
for uncharged polymers, f3 can essentially be written as (R2)K 2 and is 
therefore a large parameter in the theory and in the domain of interest to 
experiments. Equation (23) produces the previous results for uncharged 
polymers when f2--0. Note that our calculated expression (23) has the 
general form of the empirical representation (22) and therefore provides the 
first systematic theoretical approach which is capable of describing the rich 
experimental behavior of (22). It should also be noted that the same three 
scaling variables ~l, ~2, and ~3 appear in the calculation of any other 
equilibrium long wavelength properties of polyelectrolyte chains. The ap- 
propriate method for comparison between theory and experiment involves 
the calculation of a variety of measurable properties. The theory then 
proceeds by eliminating ~1, ~2, and ~3 to provide interrelationships between 
measurable properties as a direct generalization of the analysis (7) of un- 
charged polymers with a single parameter ~. 
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